TIGHT DISTANCE - REGULAR GRAPHSAleksandar
نویسنده
چکیده
We consider a distance-regular graph ? with diameter d 3 and eigenvalues k = 0 > 1 > > d. We show the intersection numbers a 1 ; b 1 satisfy (a 1 + 1) 2 : We say ? is tight whenever ? is not bipartite, and equality holds above. We characterize the tight property in a number of ways. For example, we show ? is tight if and only if the intersection numbers are given by certain rational expressions involving d independent parameters. We show ? is tight if and only if a 1 6 = 0, a d = 0, and ? is 1-homogeneous in the sense of Nomura. We show ? is tight if and only if each local graph is connected strongly-regular, with nontrivial eigenvalues ?1 ? b 1 (1 + 1) ?1 and ?1 ? b 1 (1 + d) ?1. Three innnite families and nine sporadic examples of tight distance-regular graphs are given.
منابع مشابه
Tight Distance-Regular Graphs
We consider a distance regular graph with diameter d and eigenvalues k d We show the intersection numbers a b satisfy k a d k a ka b a We say is tight whenever is not bipartite and equality holds above We charac terize the tight property in a number of ways For example we show is tight if and only if the intersection numbers are given by certain rational expressions involving d independent para...
متن کاملF-regularity relative to modules
In this paper we will generalize some of known results on the tight closure of an ideal to the tight closure of an ideal relative to a module .
متن کاملTremain equiangular tight frames
We combine Steiner systems with Hadamard matrices to produce a new class of equiangular tight frames. This in turn leads to new constructions of strongly regular graphs and distance-regular antipodal covers of the complete graph.
متن کاملDistance-regular graphs with complete multipartite μ-graphs and AT4 family
Let be an antipodal distance-regular graph of diameter 4, with eigenvalues θ0 > θ1 > θ2 > θ3 > θ4. Then its Krein parameter q4 11 vanishes precisely when is tight in the sense of Jurišić, Koolen and Terwilliger, and furthermore, precisely when is locally strongly regular with nontrivial eigenvalues p := θ2 and −q := θ3. When this is the case, the intersection parameters of can be parametrized b...
متن کاملTight Graphs and Their Primitive Idempotents
In this paper, we prove the following two theorems. Theorem 1 Let 0 denote a distance-regular graph with diameter d ≥ 3. Suppose E and F are primitive idempotents of 0, with cosine sequences σ0, σ1, . . . , σd and ρ0, ρ1, . . . , ρd , respectively. Then the following are equivalent. (i) The entry-wise product E ◦ F is a scalar multiple of a primitive idempotent of 0. (ii) There exists a real nu...
متن کامل